Research Group of Prof. Dr. H. Rauhut
Institute for Numerical Simulation
maximize

Felix Krahmer, PhD

Office:
E-Mail: felix.krahmer.hcm.uni-bonn.de

News

I have moved to the Institute for Numerical and Applied Mathematics at the University of Göttingen. Here is my new homepage.

Publications

Journal Papers:

[1] F. Krahmer, S. Mendelson, and H. Rauhut. Suprema of chaos processes and the restricted isometry property. Comm. Pure Appl. Math., to appear.
bib | .pdf 1 ]
[2] P. Casazza, A. Heinecke, F. Krahmer, and G. Kutyniok. Optimally sparse frames. IEEE J. Inf. Theo., to appear.
bib | .pdf 1 ]
[3] M. Burr and F. Krahmer. SqFreeEVAL: An (almost) optimal real-root isolation algorithm. Journal of Symbolic Computation, to appear.
bib | .pdf 1 ]
[4] F. Krahmer, R. Saab, and R. Ward. Root-exponential accuracy for coarse quantization of finite frame expansions. IEEE J. Inf. Theo., to appear.
bib | .pdf 1 ]
[5] F. Krahmer and R. Ward. Lower bounds for the error decay incurred by coarse quantization schemes. Appl. Comput. Harmonic Anal., to appear.
bib | .pdf 1 ]
[6] P. Deift, C. S. Güntürk, and F. Krahmer. An optimal family of exponentially accurate one-bit sigma-delta quantization schemes. Comm. Pure Appl. Math., 64(7):883-919, 2011.
bib | .pdf 1 ]
[7] F. Krahmer and R. Ward. New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property. SIAM J. Math. Anal., 43(3):1269-1281, 2011.
bib | .pdf 1 ]
[8] F. Krahmer, G. E. Pfander, and P. Rashkov. Uncertainty in time-frequency representations on finite abelian groups and applications. Appl. Comput. Harmon. Anal., 25(2):209-225, 2008.
bib | .pdf 1 ]

Proceeding Papers:

[1] F. Krahmer, G. E. Pfander, and P. Rashkov. An open question on the existence of gabor frames in general linear position. In S. Dahlke, I. Daubechies, M. Elad, G. Kutyniok, and G. Teschke, editors, Structured Decompositions and Efficient Algorithms, number 08492 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.
bib | http ]
[2] F. Krahmer, G. E. Pfander, and P. Rashkov. Support size restrictions on time-frequency representations of functions on finite abelian groups. In Proceedings of the 79th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), 2008.
bib ]
[3] F. Krahmer. An improved family of exponentially accurate sigma-delta quantization schemes. volume 6701, page 670105. SPIE, 2007.
bib | DOI | http ]
[4] F. Krahmer, G. E. Pfander, and P. Rashkov. Applications of the uncertainty principle for finite abelian groups to communications engineering. In Proceedings of the Humboldt-Kolleg Modern trends in mathematics and physics, Sept 2008, Varna/Bulgaria, to be published by the Bulgarian Journal of Physics.
bib ]

Thesis:

[1] F. Krahmer. Novel Schemes for Sigma-Delta Modulation: From Improved Exponential Accuracy to Low-Complexity Design. PhD thesis, New York University, 2009.
bib | .pdf 1 ]

Other Reports:

[1] M. Burr, F. Krahmer, and C. Yap. Continuous amortization: A non-probabilistic adaptive analysis technique. Technical report, Electronic Colloquium on Computational Complexity, 2009.
bib | .pdf 1 ]
[2] F. Krahmer, G. Pfander, and P. Rashkov. Support size conditions for time-frequency representations on finite abelian groups. Technical report, Jacobs University, Bremen, 2007.
bib | .pdf 1 ]